Status of Potential Industrial Biorefinery Development

Jonathan R Mielenz Oak Ridge National Laboratory

Oak Ridge, Tennessee USA

May 11, 2006

SE Regional Biomass Energy Feedstock Partnership Workshop

A biorefinery is a facility that aims to use all components of biomass to make a range of foods, fuels, chemicals, feeds, materials, heat and power in proportions that maximizes economic return.

Current and Projected US Ethanol Production

- Currently 4.5 billion gallons are produced from corn
 - -67% produced by corn dry mills and misc.
 - -33% produced by corn wet mills
- Projections for 2025 vary but possibly 25 billion gallons will be produced in line with the 25 by 25 program
 - –12.5 Billion gallons produced from corn
 - Assume 75% dry mill, 25% wet mills
 - –12.5 Billion gallons from biomass
 - Requires rapid growth of the biomass ethanol industry

Potential Crop Resources and Biorefineries in 2025

- Analysis based upon "Billion Ton Report" data
 - Snapshot view lacking the depth of the billion ton study
- Examined United States for:
 - Primary crop resources
 - Included corn stover, straws, and grasses
 - Included perennial switchgrass
 - Excludes forest resources
- Examined on a county by county basis
 - In reality, future plants will use multi-county feedstock source
- Mapped sites capable of producing 40 million gal / yr

Potential resource availability and biorefinery capacity

2025 modeled location of ethanol plants in counties with sufficient available crop residues and switchgrass (only plants greater than 40x10⁶ gallons within one county are shown)

Cropland biomass

potential (dry tons)

10.001 - 100.000

1.001 - 10.000

Potential biorefinery capacity (million

101 - 1.000

0.0 - 100

gallons)

201 - 400 A 101 - 200

• 40 - 100

Copyright 2002 by Geographic Data Technology, Inc. All rights reserved. 2002 Navigation Technologies. All rights reserved. This data includes information taken with permission from Canadian authorities 1991-2002 Government of Canada (Statistics Canada and/or Geomatics Canada), all rights reserved.

Next Era: Biomass Improvement Strategies

Targeted Goal

Broaden Planting Range

Increase tons per acre

More dollars per acre

More gallons per ton

Traits & Technologies

- Tolerance to chronic and acute drought
- High salt tolerance
- Tolerance to heat shock
- improvement in seedling growth under cold conditions
- Improve tolerance to (heavy) soil types
- Increase in biomass (in arabidopsis in the greenhouse 5X)
- Increase in rice in the field (3X)
- Increase in CO2 uptake (30%)
- Significant reduction in required nitrogen
- Improvement in photosyn efficiency on low nitrogen (20%)
 increase in root biomass
- Decrease herbicide/ pesticide requirements
- Decreased lignin
- Increased cellulose/ hemicellulose

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Source: Modified from Ceres Corp.

Increasing Gallons per Ton...

Composition

(How much carbohydrate is there?)

Gallons of ethanol per dry ton of feedstock*

Oak Ridge National Laboratory U. S. Department of Energy

*Data represents theoretical yields as reported by Iogen

Plant Genetic Engineering for Improved Bioenergy Utilization

- •Active research in four areas that support of bioenergy:
- introduction of hydrolytic enzymes into plants
- regulation of lignin levels in plants
- •increases in plant polysaccharide levels in feedstock
- fundamental genomic research on dedicated bioenergy crops ie: poplar
- Others underway as well

Bioenergy and Plant Genomics: Expanding the nation's renewable energy resources

Artist Vision of a Biorefinery with Biomass Storage Adjacent

New Domestic Bio-industry

Biomass Feedstock

- Grasses
- Agricultural Residues
- Hardwood Trees
- Softwood Trees
- Forest Residues
- Animal Wastes
- Municipal Solid Waste
- Demolition/Urban Waste

Oak Ridge National Laboratory U. S. Department of Energy

Conversion Processes

- Enzymatic Fermentation
- Gas/liquid Fermentation
- Acid Hydrolysis/Fermentation
- Gasification
- Pyrolysis
- Combustion
- Co-firing

PRODUCTS

Fuels:

- Ethanol
- Renewable Diesel
- Hydrogen

Power:

- Electricity
- Heat (co-generation)

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty acids
- Acetic Acid
- Carbon black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

Food and Feed

Source: L. Russo, US DOE Office of the Biomass Program http://www.bioproducts-bioenergy.gov/1201.html

New Domestic Bio-industry

Biomass Feedstock

- Grasses

- Agricultural Residues
- Hardwood Trees
- Softwood Trees
- Forest Residues
- Municipal Solid Waste
- Animal Wastes
- -Demolition/Urban Waste

Oak Ridge National Laboratory U. S. Department of Energy

Conversion Processes

- Enzymatic Fermentation

- Acid Hydrolysis/Fermentation
- Gas/liquid Fermentation
- -Gasification
- Pyrolysis
- Combustion
- Co-firing

PRODUCTS

Fuels:

- Ethanol
- Renewable Diesel
- Hydrogen

Power:

- Electricity
- Heat (co-generation)

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty acids
- Acetic Acid
- Carbon black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

Food and Feed

Source: L. Russo, US DOE Office of the Biomass Program http://www.bioproducts-bioenergy.gov/1201.html

New Domestic Bio-industry

Biomass Feedstock

- Grasses
- Agricultural Residues
- Hardwood Trees
- Softwood Trees
- Forest Residues
- Municipal Solid Waste
- Animal Wastes
- Demolition/Urban Waste

Oak Ridge National Laboratory U. S. Department of Energy

Conversion Processes

- Enzymatic Fermentation
- Acid Hydrolysis/Fermentation

Source: L. Russo, US DOE Office of the Biomass Program

- Gas/liquid Fermentation

http://www.bioproducts-bioenergy.gov/1201.html

- Gasification
- Pyrolysis
- Combustion
- Co-firing

PRODUCTS

Fuels:

- Ethanol
- Renewable Diesel
- Hydrogen

Power:

- Electricity
- Heat (co-generation)

Chemicals

- Plastics
- Solvents
- Chemical Intermediates
- Phenolics
- Adhesives
- Furfural
- Fatty acids
- Acetic Acid
- Carbon black
- Paints
- Dyes, Pigments, and Ink
- Detergents
- Etc.

Food and Feed

Integrated Biorefining Industry

Can Nitrogen Residues be a Vital Biorefinery Co-product?

- In 2025 corn wet and dry milling industry could produce about 38 million tons of gluten and DDGS feed.
- Corn contains 8% protein by weight, while corn stover has 4% and switchgrass 10%.
- By 2025 many new biorefinery will be built specifically to produce ONLY transportation fuels from <u>biomass</u>, but:
- Current biomass pretreatment processes severely destroy the protein and feed value in biomass
 - Many biomass ethanol plants designs ignore protein coproducts

Potential Protein Available at 25 Billion Gallons Ethanol Production in 2025

	Billion Gal Ethanol	Million Tons DDGS or Gluten	% Protein for Feed or Residue	Million Tons Protein	% Total Protein Avail.
Corn Dry Mill	9.4	31.2	30	9.4	51%
Corn Wet Mill*	3.1	7.2	22	1.6	9 %
Biomass Refinery**	12.5		5.2***	7.3***	40%
total	25			18.3	

*20% increase from present, **50% corn stover, 50% switchgrass, ***@ 25% N loss from process

- In 2025 using primary crop residues and dedicated energy grasses, biorefineries may displace ~18% petroleum use: ~80% from ethanol and ~20% from biomaterials.
- While potential plant sites are predominantly in the Eastern US, use of other biomass sources will support biorefineries in all 50 States.
- Plant engineering/breeding is underway to improve biomass for bioenergy based upon lower cost and higher return to the producer and the biorefinery
- As world population continues to increase, production of feed and food will provide ample economic justification to develop biomass processes that preserve its protein and/or nitrogen values.

